Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(4): 168443, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211892

RESUMO

Yeast plasma-membrane Na+/H+ antiporters (Nha/Sod) ensure the optimal intracellular level of alkali-metal cations and protons in cells. They are predicted to consist of 13 transmembrane segments (TMSs) and a large hydrophilic C-terminal cytoplasmic part with seven conserved domains. The substrate specificity, specifically the ability to recognize and transport K+ cations in addition to Na+ and Li+, differs among homologs. In this work, we reveal that the composition of the C-terminus impacts the ability of antiporters to transport particular cations. In the osmotolerant yeast Zygosaccharomyces rouxii, the Sod2-22 antiporter only efficiently exports Na+ and Li+, but not K+. The introduction of a negative charge or removal of a positive charge in one of the C-terminal conserved regions (C3) enabled ZrSod2-22 to transport K+. The same mutations rescued the low level of activity and purely Li+ specificity of ZrSod2-22 with the A179T mutation in TMS6, suggesting a possible interaction between this TMS and the C-terminus. The truncation or replacement of the C-terminal part of ZrSod2-22 with the C-terminus of a K+-transporting Nha/Sod antiporter (Saccharomyces cerevisiae Nha1 or Z. rouxii Nha1) also resulted in an antiporter with the capacity to export K+. In addition, in ScNha1, the replacement of three positively charged arginine residues 539-541 in the C3 region with alanine caused its inability to provide cells with tolerance to Li+. All our results demonstrate that the physiological functions of yeast Nha/Sod antiporters, either in salt tolerance or in K+ homeostasis, depend on the composition of their C-terminal parts.


Assuntos
Proteínas Fúngicas , Potássio , Trocadores de Sódio-Hidrogênio , Zygosaccharomyces , Lítio/metabolismo , Prótons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/química , Zygosaccharomyces/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Potássio/metabolismo
2.
Yeast ; 40(2): 68-83, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539385

RESUMO

In the model yeast Saccharomyces cerevisiae, Trk1 is the main K+ importer. It is involved in many important physiological processes, such as the maintenance of ion homeostasis, cell volume, intracellular pH, and plasma-membrane potential. The ScTrk1 protein can be of great interest to industry, as it was shown that changes in its activity influence ethanol production and tolerance in S. cerevisiae and also cell performance in the presence of organic acids or high ammonium under low K+ conditions. Nonconventional yeast species are attracting attention due to their unique properties and as a potential source of genes that encode proteins with unusual characteristics. In this work, we aimed to study and compare Trk proteins from Debaryomyces hansenii, Hortaea werneckii, Kluyveromyces marxianus, and Yarrowia lipolytica, four biotechnologically relevant yeasts that tolerate various extreme environments. Heterologous expression in S. cerevisiae cells lacking the endogenous Trk importers revealed differences in the studied Trk proteins' abilities to support the growth of cells under various cultivation conditions such as low K+ or the presence of toxic cations, to reduce plasma-membrane potential or to take up Rb+ . Examination of the potential of Trks to support the stress resistance of S. cerevisiae wild-type strains showed that Y. lipolytica Trk1 is a promising tool for improving cell tolerance to both low K+ and high salt and that the overproduction of S. cerevisiae's own Trk1 was the most efficient at improving the growth of cells in the presence of highly toxic Li+ ions.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Saccharomyces cerevisiae , Yarrowia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Filogenia , Proteínas de Transporte de Cátions/genética , Transporte Biológico , Yarrowia/metabolismo , Potássio/metabolismo
3.
Microbiology (Reading) ; 167(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170815

RESUMO

The existence of programmed cell death in Saccharomyces cerevisiae has been reported for many years. Glucose induces the death of S. cerevisiae in the absence of additional nutrients within a few hours, and the absence of active potassium uptake makes cells highly sensitive to this process. S. cerevisiae cells possess two transporters, Trk1 and Trk2, which ensure a high intracellular concentration of potassium, necessary for many physiological processes. Trk1 is the major system responsible for potassium acquisition in growing and dividing cells. The contribution of Trk2 to potassium uptake in growing cells is almost negligible, but Trk2 becomes crucial for stationary cells for their survival of some stresses, e.g. anhydrobiosis. As a new finding, we show that both Trk systems contribute to the relative thermotolerance of S. cerevisiae BY4741. Our results also demonstrate that Trk2 is much more important for the cell survival of glucose-induced cell death than Trk1, and that stationary cells deficient in active potassium uptake lose their ATP stocks more rapidly than cells with functional Trk systems. This is probably due to the upregulated activity of plasma-membrane Pma1 H+-ATPase, and consequently, it is the reason why these cells die earlier than cells with functional active potassium uptake.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/genética , Morte Celular , Viabilidade Microbiana , Potássio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
4.
Antonie Van Leeuwenhoek ; 114(7): 1069-1077, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33844120

RESUMO

Two Saccharomyces cerevisiae strains, BY4741 and BY4741-derived strain lacking the IST2 gene (ist2Δ), were used to characterise the possible role of cortical endoplasmic reticulum (ER) protein Ist2 upon cell dehydration and subsequent rehydration. For the first time, we show that not only protein components of the plasma membrane (PM), but also at least one ER membrane protein (Ist2) play an important role in the maintenance of the viability of yeast cells during dehydration and subsequent rehydration. The low viability of the mutant strain ist2∆ upon dehydration-rehydration stress was related to the lack of Ist2 protein in the ER. We revealed that the PM of ist2∆ strain is not able to completely restore its molecular organisation during reactivation from the state of anhydrobiosis. As the result, the permeability of the PM remains high regardless of the type of reactivation (rapid or gradual rehydration). We conclude that ER protein Ist2 plays an important role in ensuring the stability of molecular organisation and functionality of the PM during dehydration-rehydration stress. These results indicate an important role of ER-PM interactions during cells transition into the state of anhydrobiosis and the subsequent restoration of their physiological activities.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplasmático , Hidratação , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Microbiol ; 115(1): 41-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32864748

RESUMO

Erv14, a conserved cargo receptor of COPII vesicles, helps the proper trafficking of many but not all transporters to the yeast plasma membrane, for example, three out of five alkali-metal-cation transporters in Saccharomyces cerevisiae. Among them, the Nha1 cation/proton antiporter, which participates in cell cation and pH homeostasis, is a large membrane protein (985 aa) possessing a long hydrophilic C-terminus (552 aa) containing six conserved regions (C1-C6) with unknown function. A short Nha1 version, lacking almost the entire C-terminus, still binds to Erv14 but does not need it to be targeted to the plasma membrane. Comparing the localization and function of ScNha1 variants shortened at its C-terminus in cells with or without Erv14 reveals that only ScNha1 versions possessing the complete C5 region are dependent on Erv14. In addition, our broad evolutionary conservation analysis of fungal Na+ /H+ antiporters identified new conserved regions in their C-termini, and our experiments newly show C5 and other, so far unknown, regions of the C-terminus, to be involved in the functionality and substrate specificity of ScNha1. Taken together, our results reveal that also relatively small hydrophilic parts of some yeast membrane proteins underlie their need to interact with the Erv14 cargo receptor.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Antiporters/genética , Antiporters/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/fisiologia , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Sódio/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1376-1388, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136755

RESUMO

Cargo receptors in the endoplasmic reticulum (ER) recognize and help membrane and soluble proteins along the secretory pathway to reach their location and functional site. We characterized physiological properties of Saccharomyces cerevisiae strains lacking the ERV14 gene, which encodes a cargo receptor part of COPII-coated vesicles that cycles between the ER and Golgi membranes. The lack of Erv14 resulted in larger cell volume, plasma-membrane hyperpolarization, and intracellular pH decrease. Cells lacking ERV14 exhibited increased sensitivity to toxic cationic drugs and decreased ability to grow on low K+. We found no change in the localization of plasma membrane H+-ATPase Pma1, Na+, K+-ATPase Ena1 and K+ importer Trk2 or vacuolar K+-Cl- co-transporter Vhc1 in the absence of Erv14. However, Erv14 influenced the targeting of two K+-specific plasma-membrane transport systems, Tok1 (K+ channel) and Trk1 (K+ importer), that were retained in the ER in erv14Δ cells. The lack of Erv14 resulted in growth phenotypes related to a diminished amount of Trk1 and Tok1 proteins. We confirmed that Rb+ whole-cell uptake via Trk1 is not efficient in cells lacking Erv14. ScErv14 helped to target Trk1 homologues from other yeast species to the S. cerevisiae plasma membrane. The direct interaction between Erv14 and Tok1 or Trk1 was confirmed by co-immunoprecipitation and by a mating-based Split Ubiquitin System. In summary, our results identify Tok1 and Trk1 to be new cargoes for Erv14 and show this receptor to be an important player participating in the maintenance of several physiological parameters of yeast cells.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Potenciais da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte de Cátions/genética , Tamanho Celular , Retículo Endoplasmático/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Complexo de Golgi/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Canais de Potássio/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Transcriptoma
7.
FEMS Microbiol Lett ; 365(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385575

RESUMO

Dekkera bruxellensis is important for lambic beer fermentation but is considered a spoilage yeast in wine fermentation. We compared two D. bruxellensis strains isolated from wine and found that they differ in some basic properties, including osmotolerance. The genomes of both strains contain two highly similar copies of genes encoding putative glycerol-proton symporters from the STL family that are important for yeast osmotolerance. Cloning of the two DbSTL genes and their expression in suitable osmosensitive Saccharomyces cerevisiae mutants revealed that both identified genes encode functional glycerol uptake systems, but only DbStl2 has the capacity to improve the osmotolerance of S. cerevisiae cells.


Assuntos
Dekkera/fisiologia , Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Osmorregulação/genética , Simportadores/metabolismo , Dekkera/genética , Dekkera/isolamento & purificação , Dekkera/metabolismo , Proteínas Fúngicas/genética , Teste de Complementação Genética , Genoma Bacteriano/genética , Prótons , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Simportadores/genética , Vinho/microbiologia
8.
Folia Microbiol (Praha) ; 63(2): 217-227, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29052811

RESUMO

Saccharomyces species, which are mostly used in the food and beverage industries, are known to differ in their fermentation efficiency and tolerance of adverse fermentation conditions. However, the basis of their difference has not been fully elucidated, although their genomes have been sequenced and analyzed. Five strains of four Saccharomyces species (S. cerevisiae, S. kudriavzevii, S. bayanus, and S. paradoxus), when grown in parallel in laboratory conditions, exhibit very similar basic physiological parameters such as membrane potential, intracellular pH, and the degree to which they are able to quickly activate their Pma1 H+-ATPase upon glucose addition. On the other hand, they differ in their ability to proliferate in media with a very low concentration of potassium, in their osmotolerance and tolerance to toxic cations and cationic drugs in a growth-medium specific manner, and in their capacity to survive anhydrobiosis. Overall, S. cerevisiae (T73 more than FL100) and S. paradoxus are the most robust, and S. kudriavzevii the most sensitive species. Our results suggest that the difference in stress survival is based on their ability to quickly accommodate their cell size and metabolism to changing environmental conditions and to adjust their portfolio of available detoxifying transporters.


Assuntos
Saccharomyces/fisiologia , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces/classificação , Saccharomyces/genética , Saccharomyces/crescimento & desenvolvimento , Estresse Fisiológico
9.
FEMS Yeast Res ; 17(2)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199631

RESUMO

The maintenance of intracellular alkali-metal-cation homeostasis is a fundamental property of all living organisms, including the yeast Saccharomyces cerevisiae. Several transport systems are indispensable to ensure proper alkali-metal-cation levels in the yeast cytoplasm and organelles. Ist2 is an endoplasmic reticulum (ER)-resident protein involved, together with other tethering proteins, in the formation of contacts between the plasma and ER membranes. As IST2 gene deletion was shown to influence yeast growth in the presence of sodium, we focused on the roles of Ist2 in the cell response to the presence of various concentrations of alkali metal cations, and its interactions with characterised plasma membrane alkali-metal-cation transporters. Most importantly, we show that, in BY4741 background, the lack of Ist2 results in the accumulation of higher amounts of sodium when the cells are exposed to the presence of this cation, demonstrating the importance of Ist2 for the maintenance of low intracellular levels of toxic sodium. As the function and localisation of alkali-metal-cation exporters is not affected in ist2Δ cells, IST2 deletion results in an increased non-specific uptake of sodium to cells. Moreover, the deletion of IST2 influences relative cell membrane potential, pHin and the growth of cells in the presence of a limiting K+ concentration.


Assuntos
Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Sódio/metabolismo , Cátions/metabolismo , Deleção de Genes , Homeostase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
10.
FEMS Yeast Res ; 15(2)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25690770

RESUMO

Endosomal sorting complexes required for transport (ESCRTs) are involved in the formation of multivesicular bodies and sorting of targeted proteins to the yeast vacuole. The deletion of seven genes encoding components of the ESCRT machinery render Saccharomyces cerevisiae cells sensitive to high extracellular CaCl2 concentrations as well as to low pH in media. In this work, we focused on intracellular pH (pHin) homeostasis of these mutants. None of the studied ESCRT mutants exhibited an altered pHin level compared to the wild type under standard growth conditions. Nevertheless, 60 min of CaCl2 treatment resulted in a more significant drop in pHin levels in these mutants than in the wild type, suggesting that pHin homeostasis is affected in ESCRT mutants upon the addition of calcium. Similarly, CaCl2 treatment caused a bigger pHin decrease in cells lacking the vacuolar Ca(2+)/H(+) antiporter Vcx1 which indicates a role for this protein in the maintenance of proper pHin homeostasis when cells need to cope with a high CaCl2 concentration in media. Importantly, ESCRT gene deletions in the vcx1Δ strain did not result in an increase in the CaCl2-invoked drop in the pHin levels of cells, which demonstrates a genetic interaction between VCX1 and studied ESCRT genes.


Assuntos
Antiporters/metabolismo , Cálcio/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Homeostase , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Deleção de Genes , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
11.
Fungal Genet Biol ; 45(10): 1439-47, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18761413

RESUMO

Antiporters exporting Na(+) and K(+) in exchange for protons are conserved among yeast species. The only exception so far has been Zygosaccharomyces rouxii, an osmotolerant species closely related to Saccharomyces cerevisiae. Z. rouxii was described as possessing one plasma-membrane antiporter transporting only Na(+) (ZrSod2-22p in the CBS 732(T) type strain). We report the characterization of a second gene, ZrNHA1, encoding a new K(+)(Na(+))/H(+)-antiporter capable of both K(+) and Na(+) export. Synteny analyses suggested that ZrSOD2-22 originated by single duplication of the ZrNHA1 gene. Substrate specificities and transport properties of ZrNha1p and ZrSod2-22p were compared upon heterologous expression in S. cerevisiae, and then directly in Z. rouxii. Deletion mutants and phenotype analyses revealed that ZrSod2-22 antiporter is important for Na(+) detoxification, probably together with ZrEna1 ATPase; ZrNha1p is indispensable to maintain potassium homeostasis and ZrEna1p is not, in contrast to the situation in S. cerevisiae, involved in this function.


Assuntos
Cátions/metabolismo , Proteínas Fúngicas/metabolismo , Homeostase , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Zygosaccharomyces/fisiologia , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Expressão Gênica , Dados de Sequência Molecular , Alinhamento de Sequência , Deleção de Sequência , Trocadores de Sódio-Hidrogênio/genética , Zygosaccharomyces/genética
12.
Int J Food Microbiol ; 118(1): 1-7, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17602771

RESUMO

Debaryomyces hansenii is a salt tolerant yeast species, often isolated from sea water or found among other spoilage yeasts in several types of food. In this work, we examined the influence of temperature and increased osmotic pressure (two parameters also important in food industry) on D. hansenii growth. Several other authors showed that its growth at the normal yeast cultivation temperature (28 to 30 degrees C) is stimulated by the presence of sodium, in contrast to the growth of Saccharomyces cerevisiae, which is inhibited by the presence of sodium under the same experimental conditions. Here we show that the previously reported growth stimulation by sodium is temperature dependent in D. hansenii and can be observed under conditions that already amount to high temperature stress for D. hansenii. At a lower temperature (more convenient for D. hansenii cultivation), we found no significant improvement or even an inhibition of cell growth in the presence of Na(+). The growth of D. hansenii at high temperatures is also improved by the presence of potassium or sorbitol. Moreover, the temperature dependence of stimulatory effects of increased osmotic pressure in media does not seem to be unique for D. hansenii; similar relationships between the growth, cultivation temperature and presence of osmolytes we also observed for S. cerevisiae and Schizosaccharomyces pombe.


Assuntos
Conservação de Alimentos/métodos , Pressão Osmótica , Saccharomycetales/crescimento & desenvolvimento , Temperatura , Contaminação de Alimentos/prevenção & controle , Humanos , Cinética , Potássio/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/efeitos dos fármacos , Sódio/farmacologia , Sorbitol/farmacologia
13.
FEMS Yeast Res ; 7(2): 188-95, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17266728

RESUMO

The Schizosaccharomyces pombe plasma membrane Na(+)/H(+) antiporter, SpSod2p, has been shown to belong to the subfamily of yeast Na(+)/H(+) antiporters that only recognize Na(+) and Li(+) as substrates. Nevertheless, most of the studied plasma membrane alkali metal cation/H(+) antiporters from other yeasts have broader substrate specificities, exporting K(+) and Rb(+) as well. Such antiporters probably play two roles in the physiology of cells: the elimination of surplus toxic cations, and the regulation of stable intracellular K(+) content, pH and cell volume. The systematic sequencing of the Sch. pombe genome revealed the presence of an as-yet uncharacterized homolog of the Spsod2 gene (designated Spsod22). Spsod22 and Spsod2 were expressed in Saccharomyces cerevisiae cells lacking their own alkali metal cation efflux systems, and the transport properties of both Sch. pombe antiporters were compared to those of the Sac. cerevisiae Nha1 antiporter expressed under the same conditions. Here we show that SpSod22p has broad substrate specificity upon heterologous expression in Sac. cerevisiae cells and contributes to cell tolerance to high external levels of K(+). Thus, the Sch. pombe genome encodes two plasma membrane alkali metal cation/H(+) antiporters that play different roles in the physiology of the yeast.


Assuntos
Cátions Monovalentes/metabolismo , Membrana Celular/metabolismo , Metais/metabolismo , Potássio/farmacologia , Schizosaccharomyces/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Meios de Cultura , Concentração de Íons de Hidrogênio , Potássio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/fisiologia , Sódio/metabolismo , Sódio/farmacologia , Especificidade por Substrato
14.
FEBS Lett ; 580(8): 1971-6, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-16529746

RESUMO

The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.


Assuntos
Antiporters/metabolismo , Membrana Celular/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Yarrowia/fisiologia , Proteínas Fúngicas/metabolismo , Expressão Gênica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Sais/farmacologia , Análise de Sequência de Proteína , Fatores de Tempo , Yarrowia/efeitos dos fármacos , Yarrowia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...